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Bt maize and integrated pest management - a
European perspective
Michael Meissle,∗ Jörg Romeis and Franz Bigler

Abstract

The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn
rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control
includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option
that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE
maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn
rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality
and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest
outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European
Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently
authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member
state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated
pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control
measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other
preventive or responsive measures to solve other agricultural problems including those with secondary pests.
c© 2011 Society of Chemical Industry
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1 INTRODUCTION
Genetically engineered (GE) crops are grown on a steadily
increasing global area, reaching 148 million hectares in 2010.1 The
area of biotech crops was largest in the United States (67 million
hectares), followed by Brazil and Argentina (25 and 23 million
hectares respectively), India, Canada, China, Paraguay, Pakistan,
South Africa (2–9 million hectares) and 20 more countries. While
89 million hectares were cultivated with crops that carry a
gene providing tolerance against a particular herbicidal active
substance, crops with resistance to certain insect pests were
planted on 26 million hectares. Crops with both properties
(so-called stacked events) were grown on 32 million hectares
worldwide. In addition, small areas have been planted with virus-
resistant crops.1 In the European Union (EU), insect-resistant maize
has been cultivated since 1998, and GE potato with modified
starch production (Amflora) has been grown since 2010 on a total
of 245 hectares. Herbicide-tolerant crops are currently not grown
commercially in the EU. Within the next 5 years, the number of
transformation events for herbicide tolerance and insect resistance
is predicted to increase, and new traits will be commercialised,
such as optimised product composition for biofuel or industrial
inputs, improved nutrient profiles and abiotic stress tolerance, e.g.
against drought or salt.2,3

In most of today’s GE crops, insect resistance is achieved
by the expression of one or more genes from the bacterium
Bacillus thuringiensis (Bt) that encode insecticidal crystal (Cry)
proteins. Cry-protein-producing Bt bacteria are fairly abundant
in European agricultural fields.4 Cry proteins are known for their
narrow spectrum of activity, and microbial Bt products have a long

history of safe use.5 The most important crop transformed with Bt
genes is maize, with a global area of 39 million hectares, followed
by cotton, with 20 million hectares in 2010.1 In the United States,
Bt maize varieties producing a combination of six different Cry
proteins (SmartStax) have been approved recently, and maize
expressing a vegetative insecticidal protein (Vip3A) from Bt has
been commercialised.6

In the European Union, Spain has been leading commercial
production of Bt maize since 1998, with 76 575 hectares in 2010.
In addition, Portugal, the Czech Republic, Poland, Slovakia and
Romania cultivated Bt maize on a total of 14 600 hectares (Fig. 1).1

Compared with the total maize-cropping area of 13 million
hectares in the 27 EU member states,7 the proportion of Bt maize
so far has remained below 1%. In certain areas of Spain with high
corn borer infestations (e.g. Catalonia), however, adoption levels
reached 84% in 2010.1

The present article addresses the major pests in European maize
production, how they are controlled in conventional agriculture,
incentives and limitations of growing Bt maize and what role Bt
maize can play in integrated pest management (IPM) systems.
Although many new Bt maize events that are currently under
evaluation in the EU are stacked events that provide resistance to
insect pests and tolerance to herbicidal active substances (Table 1),
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Figure 1. Bt maize cultivation 2010 in Europe (in hectares). Data from
James.1 Darker shading reflects larger cultivation area.

this review focuses on the insect resistance trait. Benefits and risks
associated with herbicide-tolerant maize are discussed for the
European situation by Dewar.8

2 PEST PROBLEMS IN EUROPEAN MAIZE
PRODUCTION
The currently most important arthropod pest of maize in Europe is
the European corn borer, Ostrinia nubilalis (Hbn.) (Lepidoptera:
Crambidae).9 The species is widespread throughout Europe
(Fig. 2). Another stem-boring Lepidoptera is the Mediterranean
corn borer, Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctu-
idae), which is largely restricted to the Mediterranean region
(Fig. 2). The larvae of both species are stalk-boring caterpillars that
damage the ears as well as the stalks by chewing tunnels. This leads
to reduced plant development and nutrient and water transport
and can cause the maize stems and ears to break. In the Mediter-
ranean region, both corn-boring species have 2–3 generations,
while, in northern countries, O. nubilalis has one generation.10 – 12

Between 2 and 4 million hectares of maize suffer economic dam-
age due to corn-boring pests in the EU.13 Since 1965, O. nubilalis
populations have been expanding in central, northern and eastern
Europe, following the increased cultivation of maize. In the future,
the distribution of corn borers is expected to increase further,
mainly because of warmer climatic conditions.

In the mid-1980s, the western corn rootworm, Diabrotica
virgifera virgifera LeConte (Coleoptera: Chrysomelidae), was
accidentally introduced into Europe. Since 1992 it has been
invading the continent at an average rate of 40 km per year
(Fig. 2).14 The larvae of this beetle feed on maize roots, thereby
decreasing nutrient and water uptake and plant stability. Adults
feeding on silk and grains are particularly damaging in seed and
sweet maize production.15 The pest is considered most destructive
for maize production in the United States, and economic damage
has been reported from central and eastern European countries
as well as Italy.9 In Europe, populations are expected to expand
further.16

Other arthropod pests in maize are of more regional or
of minor importance and include noctuid lepidopteran pests
such as Sesamia cretica Led., Agrotis spp., Helicoverpa armigera
(Hbn.) and Mythimna unipuncta (Haw.), coleopteran pests such
as wireworms (Agriotes spp., Elateridae), cereal leaf beetles
(Oulema melanopus L., Chrysomelidae), sap beetles [Glischrochilus
quadrisignatus (Say), Nitidulidae], the corn weevil (Tanymecus
dilaticollis Gyll., Curculionidae) and white grubs (Melolontha
melolontha L., Scarabaeidae), different species of flies and midges
including the frit fly (Oscinella frit L., Chloropidae) and other
species [Delia platura (Meig.), Geomyza spp., Tipula spp.), as well as
spider mites (Tetranychus spp.), aphids (Aphididae), leafhoppers
(Cicadellidae) and thrips (Thysanoptera).9,17

3 PRACTISED PEST CONTROL MEASURES
If damage by pests and estimated yield loss is low, and if current
pest control options show little success, no pest control might be
the most economic strategy. However, in areas highly infested with
the European corn borer, yield losses without control measures
range typically between 5 and 30%.9 In several European countries,
corn borers remain untreated in spite of economic losses.13 For the
western corn rootworm, similar values of yield loss across Europe
are assumed, and modelling revealed that this pest would cause
an estimated damage worth ¤472 million annually if no particular
pest control measures were applied.18

In the following, the main measures currently applied to control
corn borers and corn rootworm in Europe are discussed. Research
into more or improved chemical, biological, biotechnical and
cultural methods has been conducted, but commercial application
has often not been achieved yet because of constraints in
availability, efficacy, knowledge and costs.9

3.1 Chemical control
In European maize production, the European corn borer and other
arthropod pests are often controlled with broad-spectrum insec-
ticides including pyrethroids and organophosphates.9 Spraying is
effective only when timed shortly after the eggs hatch and before
the larvae bore into the maize stem. This requires frequent scout-
ing and often several treatments. The Mediterranean corn borer,
however, is even more difficult to reach with foliar insecticides,
because the females lay eggs between the sheath and the stem
of maize plants, where the larvae are protected. Against adults of
the western corn rootworm, insecticide sprays are often applied
in central and eastern Europe if infestations are high to prevent
silk clipping in seed and sweet maize production and to reduce
the number of eggs for the next growing season in continuous
maize production.19 To control the larval stage of this pest, seed
treatments and soil insecticides applied at planting are frequently
used.19 In regions where western corn rootworm populations have
been detected but are not yet established (e.g. in south-west Ger-
many, France and the United Kingdom), eradication programmes
that are mandatory in the EU include the application of chemical
insecticides and planting restrictions of maize in buffer zones sur-
rounding new introduction points.20 In spite of these measures,
the success in delaying the spread of the pest appears to be
limited.20

In general, chemical insecticides are cheap and growers are
equipped and experienced in using them. Foliar application of
insecticides on high maize stands, however, requires special and
expensive spray equipment. The spectrum of activity is usually
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Figure 2. Distribution of the three main maize pests in Europe. A: European corn borer (Ostrinia nubilalis); B: Mediterranean corn borer (Sesamia
nonagrioides); C: western corn rootworm (Diabrotica virgifera virgifera). Map for O. nubilalis based on CABI93 (data from 1991) and Hill,10, for S. nonagrioides
based on CABI93 (data from 1979) and Naı̈bo et al.17 and for D. v. virgifera based on Edwards and Kiss94 (data from 2010). Note that the area where the
pest species cause damage to crops is generally smaller than the actual distributions of the species.

broad, which allows the control of several arthropod pests
simultaneously. This, however, is also the major drawback, as
deleterious effects on valued non-target organisms are frequent.
These include species that fulfil important ecosystem services,
such as predators, parasitic wasps, pollinators and decomposers.
Another drawback of chemical insecticides is the possibility
that the pest evolves resistance against the active ingredient,
which has happened several times in the United States with
corn rootworms.21 In the EU, different initiatives from scientific
organisations and policy makers have the aim of reducing
pesticides in modern agriculture,22 and the recently published
EU directive 2009/128/EC requires national action plans for a
reduction in pesticides and the implementation of IPM by 2014.23

3.2 Biological control
Trichogramma wasp spp. that parasitise eggs of the European
corn borer are one alternative to reduce insecticide applications
in maize. In Europe, the small wasps are released on about
150 000 hectares per year, with the largest area in France.9,24,25

Cardboards with parasitised eggs are applied to the plants
manually. Under optimal conditions, efficacy can be comparable
with chemical insecticides. Appropriate scouting, forecast systems
and efficient logistics ensure optimal timing, which is crucial for
success. Similarly to chemical insecticides, however, parasitisation
of the hidden eggs of the Mediterranean corn borer is low. In
the future, below-ground pests, such as larvae of the western
corn rootworm, could be controlled with entomopathogenic
nematodes or entomopathogenic fungi. While research on
entomopathogenic nematodes is particularly promising and
has achieved control efficacies comparable with chemical soil
insecticides, no commercial product is available yet.26 Biological
control is a preferable option for agricultural systems to become
more sustainable, because it is environmentally safe with high
specificity to the target pests. Establishment as a more widespread
agricultural practice, however, is only possible if growers and
consultants are trained and if regional hurdles in logistics, costs
and efficacy can be overcome.

3.3 Cultural methods
Against corn borers, cultural measures include cutting and
chopping stems close to the ground and ploughing under plant
remains in autumn or early spring to reduce the number of
emerging adults and thus the number of eggs laid in the new
crop. In some areas, however, no-till or reduced-tillage methods
are practised, e.g. to prevent soil erosion or improve water

availability. Against the western corn rootworm, crop rotation is
highly effective, because females lay their eggs mainly in maize
fields, and the larvae hatching in the following year are largely
restricted to maize roots as food. In the United States, however,
simple crop rotations consisting of maize and soybeans in annual
alternation have led to the evolution of beetles that oviposit less
in maize and more in soybean, which can cause problems in maize
in the following year.14 Furthermore, in some regions, continuous
cultivation of maize is most economic,27 and many farms are
not adapted to rotation systems. Crops in continuous cultivation,
however, are generally more susceptible to agricultural problems
including pests, weeds and diseases. Therefore, crop rotation is a
basic cornerstone in IPM systems and important for sustainable
agriculture. Diversified and more complex rotation systems are
warranted to prevent the evolution of rotation-resistant corn
rootworm strains in Europe.

4 INCENTIVES TO GROWING Bt MAIZE
While the Cry1Ab-expressing Bt maize event MON810 to control
corn borers is the only insect-resistant crop approved for
cultivation in the EU, applications for other transformation
events, expressing Cry1Ab or Cry1F against corn borers and
other Lepidoptera pests, Cry3Bb1, mCry3A or Cry34Ab1/Cry35Ab1
against corn rootworms or a combination of these Bt proteins, have
been submitted (Table 1). Bt maize has several advantages over
conventional pest control strategies, which has led to the fast
adoption of the technology in some world areas.

4.1 High efficiency
Bt maize is highly efficient in controlling its target pests, which
frequently results in higher yields compared with chemically pro-
tected maize crops.28,29 In the Mediterranean region, Lepidoptera-
specific Bt maize has the major advantage that it controls both the
European and the Mediterranean corn borer.30 The latter pest has
not been controllable efficiently with other strategies, because
larvae remain sheltered from insecticides applied to the plant
surface as well as from Trichogramma wasp spp. If highly efficient
pest control measures are adopted on a regional scale, area-wide
suppression of the target pest can be achieved. This has been
observed in several US states, where populations of the European
corn borer have declined significantly since Bt maize has been in-
troduced, and substantial economic benefits have been reported
also for non-Bt maize growers.31,32

wileyonlinelibrary.com/journal/ps c© 2011 Society of Chemical Industry Pest Manag Sci 2011; 67: 1049–1058
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4.2 Simple farm operations
When growing Bt maize, no critical timing for the application of the
plant protection products is necessary, because the insecticidal
protein is expressed within the plant tissue and is present over
the whole growing season. This is an advantage compared with
current European corn borer control with Trichogramma spp.,
which requires scouting, forecast systems and high manpower in
a narrow time window. Similarly, insecticide sprays need to be
timed precisely to reach the larvae of the European corn borer or
the adults of the western corn rootworm.9,19,24 Bt maize does not
need additional time investment for control of the target pests
after sowing. This is particularly beneficial in southern and central
Europe, where several generations of corn borers often require
additional applications of Trichogramma spp. or insecticides. Both
measures are more time consuming and expensive later in the
season because a 2–3 times higher number of parasitic wasps need
to be released for efficient control and special spray equipment is
necessary to enter high maize stands.9 The latter is also applicable
for the chemical control of adult western corn rootworms.

4.3 High grain quality
Fungal diseases, including Fusarium spp. causing root, stem and
ear rot, often enter the maize plant through feeding wounds
caused by arthropod pests, especially second-generation corn
borer larvae feeding on maize ears.33 In addition, arthropods
carrying fungal spores can contribute to the spreading of fungal
diseases. One major problem with Fusarium spp. is the production
of mycotoxins, which can lead to acute or chronic toxic effects
in humans or livestock.34,35 Strict maximum levels for certain
Fusarium mycotoxins in foodstuffs36 and guidance values for
animal feed37 have been implemented in the EU. The fact that Bt
maize suffers less damage by corn borers or western corn rootworm
adults results in reduced opportunities for Fusarium spp. to enter
and infect the plants. In a recent study from south-western France,
Bt maize decreased concentrations of the mycotoxins fumonisin
and zearalenone by 90 and 50%, respectively, compared with
unsprayed conventional maize.38 The authors concluded that,
according to EU regulation, 93% of the Bt maize crops could be
sold as food/feed, compared with only 45% for conventional maize.
A significant reduction in certain mycotoxins in Bt maize compared
with conventional maize has also been reported from other
experimental studies across European countries and the United
States.13,39 Furthermore, reduced silk clipping and kernel feeding
by corn borer larvae and corn rootworm adults is particularly
beneficial in seed and sweet maize production, where high grain
quality is essential for marketing.15

4.4 Ecological benefit
The insecticidal proteins produced in Bt maize have a narrow
spectrum of activity, and their potential for adverse effects on
valued non-target organisms is assessed prior to the commercial
release of any novel transformation event.40,41 Review articles
and statistical meta-analyses of numerous laboratory and field
studies conducted in Europe and elsewhere revealed generally no
detrimental effects of Bt maize on non-target species including
above-ground predators and parasitoids,42 – 45, bees46,47 and
below-ground species.48 A few studies, however, claimed direct
negative effects of Bt maize on non-target arthropods49,50 and
resulted in considerable scientific dispute concerning appropriate
methodology and data quality and interpretation.51 – 55 No such
claims, however, have been confirmed.

Non-target species closely related to the targets are likely
to be affected by Bt crops. This includes Lepidoptera species
whose larvae feed on host plants in close vicinity to Cry1Ab-
producing Bt maize during anthesis.56,57 In the risk assessment of
current Lepidoptera-specific Bt maize, the likelihood of adverse
impacts on valued butterflies was found to be low because of
low toxin doses in pollen and thus low exposure.58,59 In the case
of Chrysomelid-specific, Cry3Bb1-producing Bt maize, no valued
non-target Chrysomelid species inside maize fields or nearby that
require protection could be identified.60

On a global scale, Bt maize led to a 35% reduction in the use of
insecticidal active ingredients, and the environmental impact was
estimated to be 29% lower compared with conventional maize.61

In Spain, conventional maize farmers applied on average 0.86
treatments per year (2002–2004) compared with 0.32 treatments
for Bt maize farmers, and the percentages of farmers applying
no insecticides were 70% for Bt maize growers and 42% for
conventional maize growers.28 Therefore, Bt maize has a clear
ecological benefit if it replaces chemical insecticides, which often
cause side effects on non-target species.42,44,45 In addition, the
ecological risk of uncontrollably spreading Bt genes is negligible,
because there are no wild relatives of maize in Europe and maize
hybrids have very little potential to survive outside managed
fields.58,62

5 LIMITATIONS OF GROWING Bt MAIZE
As with any other technology, the application of Bt maize varieties
carries risks, and different factors limit their use.

5.1 Resistance evolution
The fact that Bt maize produces insecticidal proteins in a relatively
high dose over the whole season leads to a high selection
pressure for the target pests evolving resistance against the Bt
proteins. To delay resistance evolution, resistance management
plans are part of the regulatory authorisation and need to be
followed by growers. For MON810 maize in the EU, the European
Food Safety Authority (EFSA) requested that 20% conventional
maize needs to be planted as a refuge for the maintenance of
susceptible corn borer populations if the total Bt maize area of
a farm or a cluster of fields (irrespective of field and farm size)
is larger than five hectares.58 The aim is that resistant individuals
surviving on Bt maize mate with susceptible moths emerging
in large numbers from the refuge. For this so-called ‘high-dose
refuge’ strategy to be effective, random mating is necessary,
resistance has to be recessive and the toxin concentration in
plants has to be high enough to kill susceptible and resistant
heterozygous insects.63 In addition to strict refuge requirements,
resistance evolution to Cry1Ab-expressing maize (MON810) has
been monitored for S. nonagrioides and O. nubilalis.30,64,65 In
Spain, where Bt maize has been cultivated most intensively since
1998, there is no indication of a decrease in susceptibility to
the Bt protein.30,65 Evidence of resistance evolution in Cry1Ab-
expressing Bt maize fields, however, comes from the African stem
borer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) in South
Africa.66,67 However, in contrast to O. nubilalis and S. nonagrioides,
which are highly sensitive to the Cry1Ab concentrations expressed
in Bt maize, B. fusca is more tolerant to the toxin. In addition,
South African farmers did not comply to refuge requirements until
recently, or declared non-irrigated conventional maize as refuges
for irrigated Bt maize, which most likely decreased random mating
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and egg laying, because the moths prefer high humidity.66,67

Field resistance was also reported for Spodoptera frugiperda
(JE Smith) (Lepidoptera: Noctuidae) from Cry1F-expressing Bt
maize in Puerto Rico.68 Continuous year-round planting of maize,
moderate sensitivity of the pest to Cry1F, limited migration from
external ecosystems (island geography) and drought conditions
that concentrated pest populations in irrigated fields might have
contributed to unprecedented levels of selection pressure on S.
frugiperda populations.68

Glasshouse experiments revealed that D. v. virgifera shows
only moderate susceptibility to Cry3Bb1 and has therefore a
high potential to evolve resistance.69 Consequently, resistance
management plans based on the high-dose refuge concept that
are deployed successfully against corn borers may be less effective
for the corn rootworm. New Bt crops have been developed that
produce two or more different Bt proteins that target the same
pest, but with different modes of action (e.g. SmartStax). With
those so-called pyramided traits, pests need to evolve resistance
against several proteins simultaneously, which will reduce the
likelihood of resistance evolution (Table 1).70

5.2 Secondary pest outbreaks
The narrow spectrum of activity of Bt proteins can be a
disadvantage if populations of secondary pests are no longer
controlled by broad-spectrum insecticides previously applied
against the target pests. When populations exceed economic
thresholds and insecticides need to be applied against those
pests, the ecological benefit of Bt crops may be limited. Even
more problematic are situations where secondary pests remain
uncontrolled in the Bt crops and build up high populations,
which can spill over to other crops in the agricultural landscape.
Such problems have recently been recorded with mirid bugs
(Heteroptera: Miridae) in Bt cotton in China.71 Maize, however,
has a smaller pest spectrum than cotton, and insecticide input
in conventional maize is generally lower than in conventional
cotton, which limits the likelihood of such effects. However,
one example for a secondary pest problem in Bt maize is the
western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera:
Noctuidae), which is not affected by the Cry1Ab protein. A
remarkable range expansion across the corn belt in the United
States has been observed during the last decade, and problems
in maize production have been increasing.72 One explanation is
the lack of competition, which allows the pest to fill the ecological
niche of the more susceptible corn earworm, Helicoverpa zea
(Boddie) (Lepidoptera: Noctuidae), and European corn borer.73,74

In the EU, however, there are no reports of secondary pest
outbreaks associated with the cultivation of Bt maize.75 In most
maize-growing regions, the biological control function of natural
enemies, which is preserved in Bt maize, is sufficient to keep
secondary pest populations below economic injury levels.42,44 The
enhancement of natural enemies has to be an important aim in
integrated Bt maize production.

5.3 Complying to license requirements
Growers that decide on planting Bt maize currently face more ad-
ministrative work than that associated with growing conventional
maize. This involves notifications, detailed bookkeeping, specific
training and the acceptance that resistance management mea-
sures are controlled on-farm. In addition, each Bt maize grower
needs to ensure that other growers in the region have the ability to
make a practical choice between conventional, organic and GM-
crop production according to national regulation (coexistence of

different agricultural systems).76 In current legislation, the EU has
defined 0.9% as the maximum percentage of GE material that is
allowed in food and feed without the need for labelling as GE.77

Maize is an open pollinated crop, and pollen can be dispersed
by wind, even though movement is limited by the large size of
the pollen grains. To reduce the likelihood that Bt maize pollen
fertilises conventional maize growing nearby, obligatory isolation
distances are to be determined by national regulations. If existing,
these national rules differ greatly between EU member states. The
Netherlands, for example, demands a distance of 25 m between
conventional and Bt maize fields, while Luxemburg asks for as
much as 600 m.78 Based on scientific meta-analysis, isolation dis-
tances of 10–50 m would be sufficient to keep GM inputs below
the 0.9% threshold in most cases, even though greater distances
may be needed for stacked or pyramided transformation events,
which contain more introduced genetic material.76,78 More flexi-
ble coexistence measures than the fixed isolation distances that
are mandatory today could include strips of conventional maize
planted next to Bt or next to conventional maize fields that serve
as pollen barriers and potentially also as a refuge for resistance
management.76 Furthermore, planting times could be adjusted,
particularly in Mediterranean countries, to avoid Bt maize flow-
ering at the same time as conventional maize.76 In addition to
measures avoiding cross-pollination, separate production chains
(machinery and facilities for sowing, harvesting, drying, transport
and storage) for Bt maize and conventional maize are recom-
mended to avoid mixing before and after harvest.76,79 For Bt maize
growers, this requires a number of discussions and agreements
with neighbours, contractors and cooperatives, and may lead to
increased production difficulties and costs.76,80

6 AUTHORISATION OF Bt MAIZE IN THE EU
Growers willing to plant Bt maize often face the problem that au-
thorisation is denied by EU or national authorities. Today, only one
transformation event (MON810) for insect resistance is authorised
for cultivation in the EU, but 200 maize varieties carrying MON810
are currently included in the EU common catalogue of varieties of
agricultural plant species.81,82 In addition, registration applications
for the cultivation of 13 other transformation events are in the
approval pipeline (Table 1). In the current European regulatory sys-
tem, diverging political opinions of the EU member states result in
a de facto moratorium for new approvals.83 An example is the case
of Bt11 maize, a transformation event with the same cry1Ab gene
as MON810 targeting corn borers. The application was submitted
in 1996 and no decision has been reached yet (Table 1).84 In the
case of MON810, Austria, France, Germany, Greece, Luxembourg
and Hungary have banned cultivation under the safeguard clause
(Articles 16 and 18).85 While these countries justified the bans
with studies claiming potential adverse effects of Bt maize on
biodiversity, EFSA did not see evidence to change its original eval-
uation (http://www.efsa.europa.eu/en/gmo/gmoscdocs.htm). For
a discussion of the scientific basis for the recent ban in Germany,
see Ricroch et al.86 In addition to national bans, some regional
initiatives proclaim ‘GMO-free regions’.76,83

7 ECONOMICS OF ADOPTING Bt MAIZE
Seed prices for Bt maize are generally higher than for conventional
seeds, because industry is charging a premium for the Bt
technology. Crop protection is thus paid at the beginning of
the season and the costs are independent of the actual pest
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Figure 3. Principles of integrated pest management (IPM), based on Boller
et al.88.

pressure in a particular year. In areas with low or sporadic pest
pressure, it may not be economically viable for growers to pay
higher prices for Bt maize seeds. However, industry is adapting
prices regionally according to the expected benefit to growers, as
evident from Spanish data from 2002–2004.28 While conventional
seeds were less than 7% cheaper than Bt maize seeds in Albacete,
a province with low corn borer pressure, industry charged 20%
more for Bt maize seeds in the province of Zaragoza, which suffers
high pest pressure. Not surprisingly, adopting Bt maize led to
only a small increase in grower’s gross margin in Albacete, below
¤10 per hectare. In contrast, Bt maize growers in Zaragoza were
able to increase their gross margin by ¤105–135 per hectare, in
spite of the higher seed prices, because of higher yields and lower
costs for insecticide treatments.28 Spain is the only EU member
state where Bt maize adoption levels are currently delivering farm
income gains near full potential levels, while across the EU only
8–12% of the total potential benefit and 14–25% of the potential
environmental benefit are being realised.13 Surprisingly, Italy,
France, Germany and Austria have banned MON810, in spite of the
fact that they are among the countries with the largest estimated
economical and environmental benefit from corn-borer-resistant
Bt maize.13 Similarly, the non-authorisation of corn-rootworm-
resistant Bt maize in the EU results in foregone economic benefits
for growers. Values of between ¤10.5 and ¤62 per hectare were
estimated on the basis of a bioeconomic model for countries
with high pest pressure, such as Hungary, Austria, Czech Republic,
Poland, Romania, Serbia, Slovakia and Ukraine.27,87

8 Bt MAIZE – ONE TOOL IN INTEGRATED
PEST MANAGEMENT
Essential components of integrated farming are the production
of high-quality products in a sustainable way by using natural
resources and regulating mechanisms to replace polluting inputs,
preserving and improving soil fertility, maintaining a diversified
environment and observing ethical and social criteria.88 Within this
context, the basic goal of IPM is to achieve effective crop protection
in a manner that provides sustainable economic benefits to
growers and society, and minimal impact on the environment.
Biological, technical and chemical methods are balanced carefully,
with an emphasis on methods that are least harmful to the
environment and most specific to the particular pest.88 IPM
includes both preventive (indirect) and responsive (curative,
direct) pest management tactics (Fig. 3). Preventive tactics include
host plant resistance (choice of resistant or tolerant cultivars),

cultural controls (adequate cultivation techniques, optimal crop
rotations, balanced fertilisation and irrigation) and enhancement
of natural enemies (adequate plant protection measures and
ecological infrastructures within and outside production areas).
Pests are monitored, and appropriate tools determine whether
and when preventive plant protection methods are not sufficient
to keep levels of pests below an economic injury threshold. When
responsive crop protection methods need to be applied, the use
of biological control agents, biotechnical methods (e.g. mating
disruption, deterrents, sterile insect technique) and physical
measures must be preferred to chemical methods.88

The insecticidal protein produced in Bt maize can be regarded
as a responsive measure against the target pest. Insecticidal
protein is produced season long in relatively high concentrations
and independently of the actual pest pressure, which seems
to contradict IPM principles.89 However, Bt maize can also be
regarded as a preventive measure, a GE host plant resistance
against specific target pests. This built-in host plant resistance
and the high specificity allow the flexible use of Bt maize and its
combination with other control measures against non-target pests
in a sustainable way, depending on the situation in a particular
field and season, which fits well in the concept of IPM. With the
growing number of stacked maize events conferring resistance to
several pests (and tolerance to several herbicidal active substances)
(Table 1), GE maize traits may also be used in areas where their
use in pest management is not justified, i.e. when target pests
of some expressed Bt proteins are not present or not expected
to reach damaging levels. Such conflicts with good IPM practice
with the use of Bt maize may particularly arise in the future, if
only stacked events become commercially available.89 Exposure
for non-target species in Bt maize is limited to species feeding
on plant tissue (including pollen), or prey that has consumed
plant material because the insecticidal protein is produced inside
the plant.90,91 More importantly, however, toxicity to humans,
pollinators, soil organisms, natural enemies and also non-target
herbivores is negligible, which is desirable in the IPM concept.
Furthermore, a positive environmental effect can be achieved if
growing Bt maize leads to a reduction in synthetic insecticides
with a broad spectrum of exposed species and toxic effects for
humans and non-target species.28

9 CONCLUSIONS
Bt maize is a highly specific and highly efficient pest control
measure that allows growers to produce high-quality grain with
reduced insecticide inputs and farm operations. In spite of higher
seed prices and administrative requirements to fulfil licence
agreements, Bt maize growers in areas with high pest pressure have
generally been able to increase their gross margin considerably. In
consequence, the non-authorisation of Bt maize results in foregone
economic benefits for growers in several European countries. In
the case where Bt maize replaces broad-spectrum insecticides,
ecological benefits are evident because valued non-target
organisms remain unharmed. However, increasing populations
of secondary pests and resistance evolution in populations of the
target pests are potential risks for the sustainability of Bt maize
that need appropriate management plans (refuges, enhancement
of natural enemies) and close monitoring. Because of its high
efficacy, Bt maize targeting the corn rootworm could also support,
or partly replace, large-scale insecticide applications in eradication
programmes. In an IPM context, Bt maize is a highly specific tool
that efficiently solves the main pest problem and can be combined
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with other preventive or responsive measures to solve problems
including those with secondary pests.
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